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A B S T R A C T

The use of Multi-Voxel Pattern Analysis (MVPA) has increased considerably in recent functional magnetic re-
sonance imaging (fMRI) studies. A crucial step consists in the choice of a method for the estimation of responses.
However, a systematic comparison of the different estimation alternatives and their adequacy to predominant
experimental design is missing.

In the current study we compared three pattern estimation methods: Least-Squares Unitary (LSU), based on
run-wise estimation, Least-Squares All (LSA) and Least-Squares Separate (LSS), which rely on trial-wise esti-
mation. We compared the efficiency of these methods in an experiment where sustained activity needed to be
isolated from zero-duration events as well as in a block-design approach and in a event-related design. We
evaluated the sensitivity of the t-test in comparison with two non-parametric methods based on permutation
testing: one proposed in Stelzer et al. (2013), equivalent to performing a permutation in each voxel separately
and the Threshold-Free Cluster Enhancement.

LSS resulted the most accurate approach to address the large overlap of signal among close events in the
event-related designs. We found a larger sensitivity of Stelzer's method in all settings, especially in the event-
related designs, where voxels close to surpass the statistical threshold with the other approaches were now
marked as informative regions.

Our results provide evidence that LSS is the most accurate approach for unmixing events with different
duration and large overlap of signal. This is consistent with previous studies showing that LSS handles large
collinearity better than other methods. Moreover, Stelzer's potentiates this better estimation with its large
sensitivity.

1. Introduction

Multi-Voxel Pattern Analysis (MVPA) has become a widely used
technique in functional Magnetic Resonance Imaging (fMRI) studies.
MVPA employs brain activation patterns to discriminate between ex-
perimental conditions of interest. This can be considered as a classifi-
cation problem, where the classifier uses the features contained in the
patterns (e.g. the voxels in the image) to learn the relationship between
them and the experimental conditions. Then, based on this learning, the
classifier predicts the experimental conditions to which new images
belong using only their activation patterns. Since the classifier uses this
information as input, the result of the classification process depends on
the quality of the patterns and the way they are estimated. The slug-
gishness of blood-oxygen-level-dependent (BOLD) signal adds difficulty
to this classification endeavor: during an experimental condition, the

BOLD signal increases about 2 s after neural activity, peaking at about
5–8 s later and returning to baseline approximately at 20 s (Logothetis
and Wandell, 2004). In block designs, where an experimental condition
is presented continuously for an extended time interval, isolating the
relevant signal is relatively straightforward. This is similar to slow-
event related designs where the inter-stimulus-interval (ISI) is longer
than the duration of the BOLD. However, when the ISI is short (such as
in rapid event-related designs), there is a large overlap between trials,
which complicates the estimation of the contribution of each one of
them to the combination of individual hemodynamic responses (see
Fig. 1).

Most fMRI analyses use linear convolution models like the General
Linear Model (GLM) to extract estimates of responses to different event
types (Friston et al., 1998), where the model estimation is carried out
voxelwise and the BOLD time series is the dependent variable. The
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parameters of the GLM are computed by minimizing the squared errors
across scans between the timeseries that is predicted, guided by in-
formation of the fMRI experiment like stimulus onsets and assuming the
shape of the BOLD response and the noise in the data. Eq. (1) shows
mathematically how this estimation is performed:

= ′ ′−β X X X Yˆ ( ) ,S S S
1 (1)

where Y is the vector of the BOLD response time series, XS is the design
matrix and β is the vector of activation estimates.

Previous studies have explored different methods to obtain activa-
tion estimates (also known as beta weights or beta maps) in event-re-
lated designs (Abdulrahman and Henson, 2016; Mumford et al., 2012).
The most common is the so-called ‘Least-Squares Unitary’ (LSU), in
which all trials of the same type (e.g. experimental conditions) are
collapsed into one single regressor, and trial variability is relegated to
the GLM error term. Other studies have focused on obtaining single-
trial parameter estimates. The most straightforward approach is known
as beta-series regression (Rissman et al., 2004), in which a different
regressor is used for each trial. Following the notation in Mumford et al.
(2012), we from now on denote it as ‘Least-Squares All’ (LSA). Fig. 2
shows a visual representation of how these two methods work. For two
different stimuli (e.g. a letter and a face), LSU estimates the contribu-
tion to the hemodynamic signal of each condition along the run,
whereas LSA estimates it trial-by-trial. When trials have short ISI, the
regressors become highly correlated, which can inflate the variance of
the resulting parameter estimates and the subsequent classification
accuracies (Mumford et al., 2014). To address this drawback, Turner
(2010) introduced an alternative method known as ‘Least-Squares Se-
parate’ (LSS), based on iteratively fitting a new GLM for each trial.
There are different variants on this approach depending on the number
of regressors defined. In the simplest one, LSS-1, there is a parameter
for the target trial and another single nuisance parameter for the rest
(see Fig. 3). In LSS-2, each GLM includes three regressors: the first one,

for the target trial; the second for the rest of the trials of the same type
as the target, whereas the third is used for the trials of a different type.
It is thus possible to define as many nuisance parameters as trial types
(e.g. LSS-N), although LSS-1 (from now on, LSS) is commonly used due
to its simplicity and high performance (Abdulrahman and Henson,
2016; Turner et al., 2012).

The advantages of single-trial estimates are reflected in the fields of
neuroscience and also machine learning. Regarding the first one, a good
example is the study of working memory, where classic models assume
that information is stored via persistent neural activity (Sreenivasan
et al., 2014). Whereas averaging across trials may cancel out the noise
and improve the signal-to-noise ratio, trial-wise averaging may also
remove important coding signals (e.g. Stokes and Spaal, 2016). From
the machine learning standpoint, estimating one beta map per trial
yields a larger number of images to train the classifier, which improves
generalization. Pereira et al. (2008) discussed the important tradeoff
between having many noisy examples (e.g. one per trial) or fewer,
cleaner ones (e.g. one of each class per run), as a result of averaging
images of the same class. Although there is not a fixed number of ex-
amples necessary to train the classifier, the more the better. Hebart
et al. (2016) showed that run-wise beta estimates can be more reliable
than single-trial ones, which can potentially lead to higher accuracies
(Ku et al., 2008) or slightly improve power (Allefeld and Haynes, 2014).
However, according to Pereira et al. (2008), at least a few tens of ex-
amples in each class are needed to properly estimate the parameters of
the classifier, so LSS or LSA would be the most recommended option.

When trying to compare different methodological alternatives for
decoding analysis, measuring the performance of the classifier is im-
portant, but evaluating its significance is crucial. In neuroscience re-
search, the main aim is to determine the probability of a decoding result

Fig. 1. Schematics of two different fMRI de-
signs: block and event-related. The first row
corresponds to the timing of event onsets. In
block designs, several stimuli of the same
condition are presented consecutively, in what
is known as epoch or block, and different
conditions usually alternate in time, so rela-
tively large signal changes are measured. In
event-related designs, interleaved short-dura-
tion stimuli are employed. Given the delayed
nature of the BOLD signal, the data produced
by different stimuli overlaps, and thus ex-

tracting the signal caused by each one of them becomes more difficult.

Fig. 2. Comparison of two different approaches for pattern estimate. At the top
of the figure, LSU, in which all the trials of the same type for each run are
collapsed into the same regressor. At the bottom, LSA, based on estimating one
model in which each event is modelled as a separate regressor. LSU can yield
less noisy estimates because of the averaging of all the stimuli of the same type
within a run, but the amount of resulting estimates to train the classifier with is
limited to the number of runs the experiment is divided into.

Fig. 3. LSS iteratively fits a new GLM for each unique event with two predicted
BOLD time courses: one for the target event and a nuisance parameter estimate
which represents the activation for the rest of the events. LSS estimates as many
models as the total number of regressors, and in each one only two of them are
included: one for the event of interest and a nuisance parameter estimate which
stands for the activation for the rest of the events.
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at the group level. The large number of voxels in fMRI analyses results
in massive statistical tests, which need to be corrected for multiple
comparisons. Cluster-level inference has become the most popular
method due to its larger sensitivity compared to voxel-level inference.
As the name suggests, this method does not estimate the false-positive
probability of isolated voxels, but evaluates if a cluster is significant as a
whole. To do so, this approach assumes that there is a correlation be-
tween adjacent voxels, so that the signal in each voxel is not completely
independent of its neighbors. Cluster-level inference consists of two
stages: first, a primary threshold at the voxel level is employed to obtain
those that surpass a certain statistical p-value. The election of the
threshold is arbitrary in some way (Friston et al., 1994), and what is
more important, results can highly vary depending on the threshold
considered. Setting a liberal primary threshold may decrease the spatial
specificity, in addition to boosting the false-positives rate. In fact, Woo
and Wager (2014) demonstrated that using primary thresholds that are
too liberal can have detrimental effects on false positives, localization
and interpretation. Regarding the second stage, a cluster-level extent
threshold is used to retain the set of voxels that surpass the minimum
size that a cluster should have to be considered significant. This
threshold is computed based on theoretical methods such as Random
Field Theory (RFT, Worsley et al., 1999), Monte Carlo simulations
(Forman et al., 1995) or non-parametric approaches (Nichols and
Holmes, 2002).

Previous studies have shown that RFT corrections tend to be too
conservative (Hayasaka and Nichols, 2003) as well as prone to false
positives (Eklund et al., 2016). Besides, RFT imposes several assump-
tions about the data which are not always met, such as the smoothness
of the fMRI images or the uniform distribution of this smoothness over
the brain. However, the key problem for applying RFT in classification-
based analysis is that the distribution of the accuracies is unknown, and
they are assumed to be normally distributed. As an alternative, statis-
tical significance can be evaluated by non-parametric approaches based
on permutation testing, which does not require any assumption except
exchangeability. The basic principles of permutation testing are simple
(Brammer et al., 1997; Bullmore et al., 1999; Chen et al., 2011; Nichols
and Holmes, 2002; Pereira and Botvinick, 2011; Winkler et al., 2014),
and previous research has theoretically evaluated their use in classifi-
cation analyses (Golland and Fischl, 2003). Briefly, this test consists on
shuffling the data, computing statistics and cluster sizes and generating
a null distribution of the cluster sizes, from which it is possible to es-
tablish the minimum size needed to reach significance (see Nichols and
Holmes (2001) for a more detailed explanation). Based on this concept,
Stelzer et al. (2013) proposed a framework to derive a cluster size p-
value at the group level, employing a Monte Carlo method to combine
individual results. To compute the cluster-defining primary threshold,
this method builds an empirical distribution for each voxel separately,
minimizing the consequences related to spatial inhomogeneities that a
global accuracy threshold would have. An alternative solution was
proposed by Smith and Nichols (2009), the so-called Threshold-Free
Cluster Enhancement (TFCE). This algorithm transforms the value of
each voxel to a weighted score of the surrounding voxels, summarizing
the cluster-wise evidence at each voxel. However, its most interesting
contribution is that it does not require setting a cluster-defining primary
threshold, eliminating the arbitrariness on this election and the sub-
sequent dependence of the results.

Previous research has compared how different pattern estimation
methods compute the activity elicited by each trial separately.
However, frequently, paradigms aim at isolating the activity of different
events within the same trial, which suffers from significantly high
signal overlap. The effect of alternative methods in this type of ex-
perimental design is yet unknown. Therefore, in this study, we aimed at
evaluating the performance of different approaches in a context where a
sustained activity had to be isolated from a zero-duration event (Dataset
1). Specifically, we tested the performance of LSU, LSA and LSS
methods in the aforementioned design (Dataset 1), in addition to a

classic block design (Dataset 2) and an event-related design (Dataset 3).
Based on previous studies (Abdulrahman and Henson, 2016; Mumford
et al., 2014, 2012), we predicted that LSS would estimate more accu-
rately the signal elicited by each trial event, due to the way this method
addresses the collinearity between close-in-time experimental condi-
tions. This collinearity is lower both in blocked or slow event-related
designs, so that the three pattern estimation methods should be able to
accurately estimate the activation patterns. Moreover, we examined the
suitability of parametric (t-test) and non-parametric (Stelzer's and
TFCE) approaches to evaluate the significance of the results obtained
with the different estimation methods in the event-related design. We
hypothesized that the two non-parametric techniques would yield a
higher sensitivity than the standard t-test, although variations between
the two permutation-based approaches were expected due to the dif-
ferent cluster-search algorithms that they employ and the way permu-
tations are applied. In contrast, we predicted that the three pattern
estimation methods and the different statistical approaches would ob-
tain similar results in the block design.

2. Material and methods

2.1. Dataset 1

2.1.1. Participants
Twenty-four students from the University of Granada (M=21.08,

SD=2.92, 12 men) took part in the experiment and received an eco-
nomic remuneration (20–25 euros, according to performance). All of
them were right-handed with normal to corrected-to-normal vision, no
history of neurological disorders, and signed a consent form approved
by the local Ethics Committee.

2.1.2. Acquisition
fMRI data were acquired using a 3T Siemens Trio scanner at the

Mind, Brain and Behavior Research Centre (CIMCYC) in Granada
(Spain). Functional images were obtained with a T2*-weighted echo
planar imaging (EPI) sequence, with a TR of 2000ms. Thirty-two des-
cendent slices with a thickness of 3.5mm (20% gap) were obtained
(TE=30ms, flip angle= 80°, voxel size of 3.5mm3). The sequence
was divided in 8 runs, consisting of 166 volumes each. After the func-
tional sessions, a structural image of each participant with a high-re-
solution T1-weighted sequence (TR=1900ms; TE= 2.52ms; flip
angle= 9°, voxel size of 1mm3) was acquired.

We used SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12) to preprocess and analyze the neuroimaging data. The first 3
volumes were discarded to allow for saturation of the signal. Images
were realigned and unwarped to correct for head motion, followed by
slice-timing correction. Afterwards, T1 images were coregistered with
the realigned functional images. To better preserve the spatial config-
uration of activations in individual subjects, images were not smoothed
nor spatially normalized into a common space.

2.1.3. Design
The task contained two events in each trial, first a word (positive,

negative or neutral in valence) and second two numbers, to which
participants had to respond. These two numbers corresponded to the
offer that participants received, from which they decided to collaborate
or not based on the fairness/unfairness of the offer. They performed a
total of 192 trials, arranged in 8 runs (24 trials per run), in a coun-
terbalanced order across participants. Each trial started with the word
for 1000ms, followed by a jittered interval lasting 5500ms on average
(4–7 s, +/0.25°). Then, the numbers appeared for 500ms followed by a
second jittered interval (5500ms on average; 4–7 s, +/0.25°). The first
event was modelled as the duration of the word and the variable jittered
interval, yielding a global duration ranging from 5 to 8 s. The second
event was modelled as an impulse function (Dirac delta), i.e. with zero
duration, as explained in Henson (2005). Participants read an adjective
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with a certain valence, and then they used this information to prepare
to respond to the offer (second event). Thus, there was a preparatory
process that led to a sustained activity along time. However, the second
event captured a completely different process. Once participants made
a decision (cooperate or not depending on the fairness of the offer), the
process ended. A large body of literature shows that preparatory pro-
cesses extend in time (e.g. Bode and Haynes, 2009; González-García
et al., 2017; González-García and Mas-Herrero, 2016; Sakai, 2008)
whereas responding to a brief target does not (see the temporal dura-
tion of the potentials in Moser et al., 2014). This has been also mea-
sured by other neuroimaging methods, such as the CNV ERP potential
(Russo et al., 2017). For this theoretical cognitive reason, this second
event wss modelled with zero duration. Besides, we ran an additional
analysis to evaluate whether modelling the first event as an impulse
function (zero duration) influenced the results by reducing the colli-
nearity of the regressors between the first and second events in a trial.
On the other hand, the beginning of runs and the inter-trial jittered
intervals served as the implicit baseline. The whole fMRI session lasted
41min approximately.

To test the performance of the different approaches (accurate esti-
mation of signal activity for pattern estimation methods and large
sensitivity and low false-positives rate for statistical methods), we fo-
cused on two different classification analyses, one for each part of the
trial. We firstly aimed at discriminating the positive vs. negative valence
of the words (e.g. Lindquist et al., 2015; from now on, valence classi-
fication) that were equated in number of letters, frequency of use and
arousal (Gaertig et al., 2012). The total number of images available for
the classification procedure varied according to the method used to
estimate the patterns. As Table 1 shows, LSU yielded 8 images per
condition, one for each run. LSA and LSS obtained the same number as
positive/negative trials in the experiment (64 of each category, per
participant). Last, we aimed to discriminate between fair and unfair
offers (fairness classification). LSU yielded again 8 images per condition.
On the other hand, LSA and LSS obtained 96 images for each condition
and participant.

2.2. Dataset 2

We used data of six participants from the study published by Haxby
et al. (2001), which has served as example fMRI dataset several times
(e.g. Hanson et al., 2004; O’Toole et al., 2007). Neural responses were
measured with gradient echoplanar imaging on a GE 3T scanner
(General Electric, Milwaukee, WI) [repetition time (TR)= 2500ms, 40
3.5-mm-thick sagittal images, field of view (FOV)=24 cm, echo time
(TE)= 30ms, flip angle= 90°] while they performed a one-back re-
petition detection task. High-resolution T1-weighted spoiled gradient
recall (SPGR) images were obtained for each subject to provide detailed
anatomy (124 1.2-mm-thick sagittal images, FOV=24 cm).

The dataset itself consists of 12 runs where the participants viewed
grayscale images of eight object categories: faces, houses, cats, bottles,
scissors, shoes, chairs and scrambled images. Each run began and ended
with 12-s rest and contained eight blocks of 24-s duration, one for each
category, separated by 12-s of rest. Stimuli were presented for 500ms
with an interstimulus interval of 1500ms. We focused on the faces vs.
houses classification, although the rest of the stimuli were also included

in the GLM to preserve the implicit baseline. Since only one block for
each stimulus type was presented in each run, LSU and LSA were
equivalent. Although the LSS estimation was developed for event-re-
lated designs, we implemented a blocked-version of the LSS approach
by iteratively fitting a new GLM for each block. For each model, the
target condition is associated with one regressor, and the rest are as-
sociated with one error regressor. Thus, there are 8 models for each run,
one for category. All methods yielded the same number of estimates to
train the algorithm: 1 per run and condition.

2.3. Dataset 3

We used data from 33 participants of a recent study published by
Visconti di Oleggio Castello et al. (2017). The full database was openly
available in Datalad repository (http://datalad.org). Brain images were
acquired using a 3T Philips Achieva Intera scanner with a 32-channel
head coil [repetition time (TR)= 2000ms, 35 3-mm-thick axial images,
field of view (FOV)=24 cm, echo time (TE)= 35ms, flip angle= 90°].
A single high-resolution T1-weighted (TE/TR=3.7/8.2 ms) anatomical
scan was acquired with a 3D-TFE sequence. For a more detailed ex-
planation see the original work (Visconti di Oleggio Castello et al.,
2017). Preprocessing was carried out following the same procedure
used for Dataset 1.

The dataset consists of 11 runs where the participants viewed pic-
tures portraying different familiar and unfamiliar identities: four faces
of friends, four unknown faces, and the participant's own face. A trial
consisted of three different images of the same individual (normal trial)
or two different identities (odball trials), each presented for 500ms
with no gap, followed by a 4500ms inter-trial interval displaying a
white fixation cross. Each trial was modelled with a duration of 1.5 s, as
it was done in the original paper (Visconti di Oleggio Castello et al.,
2017). The order of the events was pseudo-randomized to approximate
a first-order counterbalancing of conditions. A functional run contained
48 trials: four trials for each of the nine individuals (four familiar, four
unfamiliar and self), four blank trials, four oddball and four buffer trials
(three at the beginning and one at the end). Each run had 10 s of
fixation at the beginning to stabilize the BOLD signal and at the end (to
collect the response to the last trials). We focused on discriminating the
neural activity associated with familiar vs. unfamiliar faces. Eleven beta
estimates per condition were obtained by LSU, whereas LSA and LSS
yielded 176.

2.4. Searchlight analysis

For each dataset, we employed a searchlight approach across the
whole brain (Kriegeskorte et al., 2006). We used The Decoding Toolbox
(TDT, Hebart et al., 2015) to create spherical regions of 12mm, limiting
the analysis to the voxels contained in it. This size was chosen ac-
cording to previous studies that showed a systematic decrease in per-
formance when a larger size is selected (e.g. Arco et al., 2016; Chen
et al., 2011). The procedure was repeated across all the positions of the
brain, yielding an accuracy map in which each value represented the
accuracy obtained when a given voxel was the center of the sphere. To
classify images, we employed a support vector machine (SVM) with a
linear kernel (Misaki et al., 2010; Pereira et al., 2008). A leave-one-run-
out scheme was used to cross-validate the performance of the classifier
(Coutanche and Thompson-Schill, 2012; Haynes and Rees, 2006; Lee
et al., 2011; Reddy et al., 2010; Wolbers et al., 2011). In this scheme,
the classifier is trained with images from all but one run, whereas the
patterns of the remaining run are used to test the performance of the
algorithm. The number of images available for the training/testing
process highly depends on the dataset used, the pattern estimation
method employed and the classification problem evaluated. This in-
formation is summarized in Table 1.

Table 1
Average number of beta maps obtained by each pattern estimation method and
dataset used, for each classification problem evaluated.

Method Dataset 1 Dataset 2 Dataset 3

Valence Fairness Faces vs houses Familiarity

LSU 8 8 12 11
LSA 64 96 12 176
LSS 64 96 12 176
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2.5. Evaluating statistical significance

The use of multivariate decoding for interpretation instead of pre-
diction does not aim at obtaining a classifier with the largest accuracy
as possible, but obtaining a decoding model that performs reliably
better than chance (Hebart and Baker, 2017). This would demonstrate
that there is information in the data related to the experimental con-
dition under study, which increases our knowledge about the neural
mechanisms associated with a certain task. Moreover, there is a certain
variability between each individual brain, so it is necessary to evaluate
if the obtained results are significant at the population level. We de-
scribe in this section the theoretical framework of the three methods
employed in our study.

2.5.1. t-test and Gaussian Random Field Theory
The first method evaluated is based on Gaussian Random Field

Theory (RFT), a mathematical framework that finds the specific
threshold for a smooth statistical map that meets the required family-
wise error rate (Brett et al., 2003). The smoothness of a statistical image
is not usually known, but it can be estimated as the number of resels
that the image has. The concept of resel (resolution element), in-
troduced in Worsley et al. (1992), is similar to the number of in-
dependent observations in the image, and it is a function of the number
of voxels in the image and the Full Width at Half Maximum (FWHM).
Another crucial concept is the Euler characteristic (EC), which is a
property related to the probability that a number of clusters is con-
sidered significant when a certain statistical threshold is used. Fol-
lowing the expression derived from Worsley et al. (1992), it is possible
to compute the expected value of EC, as follows:

= − −E R π Z e[EC] (4 log 2)(2 ) ,e t
Z3

2
1
2 t

2
(2)

where R is the number of resels and Zt is the Z score threshold. This
expression corresponds to images of two dimensions, but the methods
are equivalent to three-dimensional images. It is worth noting that the
expected value of the EC is approximately equivalent to the probability
of a family wise error, especially at high thresholds. By setting this
value to the standard 0.05, it is possible to conclude that the remaining
clusters have a maximum probability of 0.05 of having occurred by
chance.

We employed the functions provided by the SPM12 package (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12) to apply this method. The
procedure followed was the same for all the datasets evaluated. After
computing the decoding accuracy map for each subject, all maps were
normalized to a standard EPI. Then, a voxel-wise t-test against the
theoretical chance (0.5 in our binary-classification analyses) was ap-
plied to these normalized maps. We employed a cluster-defining pri-
mary threshold of p < 0.001 (uncorrected), which was later used to
find significant clusters (FWE corrected, p < 0.05) on the resulting
map.

2.5.2. Stelzer's
The second method evaluated, Stelzer's, combines results from each

subject with a Monte Carlo method and based on that, derives a cluster
size p-value at the group level. This approach is based on permutation
tests, which unlike RFT, rely on minimal assumptions. Specifically, a
within-subject searchlight analysis was performed shuffling the labels
corresponding to the two experimental conditions to distinguish from.
We carried out this step 100 times per participant, yielding 100 per-
muted accuracy maps. Then, these maps were spatially-normalized to a
standard EPI image to register images of different subjects into the same
coordinate system. A map from each participant was randomly picked
following a Monte Carlo resampling with replacement (Forman et al.,
1995), averaging the values voxel-wise and obtaining a permuted group
map. This procedure was carried out 50000 times, yielding 50000
group permuted maps. This process is equivalent to building an

empirical chance distribution for each voxel in the brain. To evaluate
the significance of each voxel, it is necessary to compare the null dis-
tribution with the real accuracy. This accuracy is obtained by training
the classifier with actual true labels, and averaging the resulting maps
across subjects (from now on, the real group map). For a cluster-de-
fining primary threshold of p-value = 0.001 and a distribution of 50000
samples, a voxel will be significant when no more than 50 voxels of the
empirical distribution have a larger value than the value of the real
group map. To compute the specific p-value for a voxel x, we employed
the following equation:

=
+

+
p x n x

N
( ) 1 ( )

1
,voxel (3)

where n(x) is the number of samples from the empirical distribution
with a larger value than the one obtained training the classifier with the
true labels at the voxel x, and N is the number of permutations done.

Once the image has been thresholded at the voxel-level (applying
the cluster-defining primary threshold), an empirical distribution of the
cluster sizes of the 50,000 permuted maps is built to compute the re-
quired family-wise error rate at the cluster-level. A set of contiguous
voxels are considered a cluster if they share a face, but not an edge or a
vertex, in which Stelzer et al. (2013) defines as a 6-connectivity
scheme. This cluster search is also applied to the real group map, so that
only the clusters which surpass the cluster-level extent threshold are
considered significant. A cluster with a size s is computed to have a p-
value of

∑= ′
′>

∞

p H s( )
s s

cluster cluster
(4)

where Hcluster is the normalized histogram of cluster sizes in the em-
pirical distribution (number of clusters with size s′ divided by the total
number of clusters). Once each cluster size has an associated p-value, an
FWE correction (p=0.05) is applied on all clusters p-values to correct
for multiple comparisons at the cluster level. The whole procedure is
summarized in Fig. 4.

Fig. 5 shows an example of the group distribution of the accuracies
in one voxel for Dataset 1 (valence classification) and Dataset 2.
Training with permuted labels results in accuracies around chance level
(50%) in most of the permutations. The green vertical line indicates the
significance threshold at which a given accuracy is considered sig-
nificant, whereas the black one shows the accuracy level obtained after
training the classifier with the true labels. It is worth noting that ac-
curacies are not homogeneous across the brain, but they depend on the
region from which information is being decoded. For this reason, it is
remarkable that this method computes a different empirical distribution
for each voxel separately. We employed custom code to carry out all the
described stages of Stelzer's method.

2.5.3. TFCE
The last method used was TFCE, included in the FMRIB Software

Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The basis of this
method is to transform images to facilitate the discrimination between
significant and non significant voxels. This transformation relies on the
concept that in each image, there are sets of contiguous voxels which
are candidates to belong to a cluster. There are two possible extreme
scenarios: the first one is that the intensity of the voxels is large (high
statistical values) but they are locally distributed. However, it is also
possible that the signal is weak (low statistical values) but spatially
extended. The main aim of TFCE is to level these two situations so that
both are equally likely to be a significant cluster. Mathematically, the
expression to compute a TFCE score is

∫=
=

p e h hTFCE( ) ( ) dh,
h h

h E Hp

0 (5)

where h0 is typically zero, e is the extent of the cluster that voxel p
belongs to and h is the primary threshold. For each voxel, a TFCE score
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is computed as the sum of the product between the extent of the cluster
and the different primary thresholds (h ranging from 0 to hp). The
contribution of these two factors depends on E and H. Smith and
Nichols (2009) evaluated a wide range of values for these parameters
and established that E=0.5 and H=2 are the optimal ones.

On our analysis following this approach, the accuracy maps for all
participants were entered into a second-level analysis, where a one-
sample t-test was used to contrast conditions. To assess significance at
the population level, permutation tests were applied. On each permu-
tation, the signs of the individual accuracy maps were randomly flipped
and a new t-test was performed. This was repeated 50000 times,

obtaining an empirical null distribution of t-values. The TFCE trans-
formation was later applied to find significant clusters (FWE-corrected,
p = 0.05). Fig. 6 illustrates this procedure.

3. Results

In this section, we report the results from the three datasets eval-
uated in this study (1: two events of different duration in each trial, 2:
block design, 3: event related design with events of the same non-zero
duration) estimated with LSU, LSA and LSS and statistically tested with
parametric (t-test) and non-parametric (Stelzer's and TFCE) approaches.
Additionally, we evaluated two different ways of modelling the two

Fig. 4. Schematic representation of Stelzer's method. For each subject, a clas-
sifier is trained 100 times permuting the labels of the images, resulting in 100
accuracy maps which are spatially normalized into a common space. From each
subject, a map is randomly picked following a Monte Carlo resampling with
replacement procedure, averaging the values voxel-wise to obtain a permuted
group map. This procedure is repeated 50000 times, building empirically a
chance distribution for each voxel position and selecting the 50th greatest
value, which statistically corresponds to the accuracy threshold that marks the
significance.

Fig. 5. Distributions of group permuted accuracies in one voxel for the two datasets used: Dataset 1 (left) and Dataset 2 (right). While in Dataset 1 most accuracies are
around chance level, in the second one the number of voxels that surpass the threshold is much larger.

Fig. 6. Schematic representation of the TFCE approach. Once all subjects’ ac-
curacy maps are merged, the TFCE algorithm is applied. For a given point p, its
value is replaced by an average of the intensities of the voxels of its neigh-
bourhood, enhancing the intensity within cluster-like regions. To determine the
significant voxels, a one-sample t-test is used. Besides, permutation tests are
applied, flipping the signs of the individual accuracy maps and performing a
new t-test. To correct for multiple comparisons, the null distribution of the
maximum TFCE score is built up, testing the actual TFCE image against it.
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events in Dataset 1 to study how the duration of the events influenced
the results. In the first one, the duration of the jittered interval that
separates the two events was added to the first event (words). The al-
ternative was to model both events (words and numbers) as impulse
functions, e.g. with zero duration.

3.1. Comparison of different pattern estimation models (LSU, LSA and LSS)

We first focused on comparing the three pattern estimation methods
in four different scenarios: i) a paradigm with two events of different
durations per trial (event-related design) where the individual con-
tribution of both events was computed, Dataset 1, ii) same paradigm but
modelling the two events with zero duration, Dataset 1, iii) a block-
design from the pioneering study of Haxby et al. (2001), Dataset 2, and
iv) an event-related design from a recently published study (Visconti di
Oleggio Castello et al., 2017) where all trials were modelled with the
same duration, Dataset 3. Results in terms of cluster detection and
number of significant voxels observed are summarized from Tables 2–4.
For the valence classification in Dataset 1, no significant voxels were
found when LSU or LSA were applied regardless of the statistical
method used and the way the events were modelled, whereas the LSS
method uncovered a set of informative regions (see Figs. 7–10). In the
fairness classification, LSA was the only method that did not obtain any
significant result. Table 3 summarizes the results for the fairness clas-
sification, illustrating very similar results for the two ways of modelling
the first event. Besides, Figs. 11 and 13 show the small difference found
between the two models. Regarding Dataset 2, all pattern estimation
methods showed a larger sensitivity than with Dataset 1 (see Table 4).
Specifically, the informative regions obtained by each one of them were
very similar across methods. Unlike Dataset 1, LSA allowed a reliable
estimation of the neural activity in Dataset 3, in addition to LSU and
LSS. The experiment aimed at finding differences at the trial level and
not to isolate the neural activity of different events within each trial,
which is considerably harder.

3.2. t-test vs. non-parametric methods

We next employed the three methods described in Section 2.5, that
is, the t-test, Stelzer's and TFCE, to assess significance of the obtained
results. Fig. 7 shows the significant results obtained by each of them

when the LSS estimation method was employed in the valence classifi-
cation of Dataset 1, when the first event was modelled with its corre-
sponding duration. Here, the t-test and TFCE yielded essentially the
same results in terms of number of voxels marked as significant and
their spatial distribution, but largely differed from Stelzer's. In fact, this
method obtained approximately 8 times more significant voxels than
the others. All clusters found by the t-test and TFCE were also included
in Stelzer's, but their spatial extent was larger in the latter. When the
first event was modelled with zero duration, TFCE did not yield any
significant result, but the t-test and Stelzer's obtained exactly the same
informative cluster. Fig. 10 shows these results and illustrates the dif-
ferences between the two ways of modelling the first event.

In the fairness classification (first event modelled with its corre-
sponding duration), the differential sensitivity between the t-test and

Table 2
Comparison of the clusters distribution by the different pattern estimation
methods and statistical tests in the valence classification after modelling the
words as epochs/zero-duration events.

Least-Squares Unitary (LSU)

Duration Impulse

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 0 0 0 0 0 0
Average cluster size 0 0 0 0 0 0
Significant voxels 0 0 0 0 0 0

Least-Squares All (LSA)

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 0 0 0 0 0 0
Average cluster size 0 0 0 0 0 0
Significant voxels 0 0 0 0 0 0

Least-Squares Separate (LSS)

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 4 3 5 1 1 0
Average cluster size 30 329 24 52 54 0
Significant voxels 122 987 120 52 54 0

Table 3
Comparison of the clusters distribution by the different pattern estimation
methods and statistical tests in the fairness classification after modelling the
words as epochs/zero-duration events.

Least-Squares Unitary (LSU)

Duration Impulse

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 3 1 1 2 1 1
Average cluster size 628 15422 13909 1058 13832 14399
Significant voxels 1883 15422 13909 2116 13832 14399

Least-Squares All (LSA)

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 0 0 0 0 0 0
Average cluster size 0 0 0 0 0 0
Significant voxels 0 0 0 0 0 0

Least-Squares Separate (LSS)

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 2 1 1 1 1 1
Average cluster size 4469 17620 16790 9742 16342 13584
Significant voxels 8938 17620 16790 9742 16342 13584

Table 4
Summary of the clusters distribution by the different pattern estimation
methods and statistical tests in Datasets 2 and 3.

Least-Squares Unitary (LSU)

Dataset 2 Dataset 3

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 4 1 1 5 2 3
Average cluster size 1821 9881 7717 527 2511 748
Significant voxels 7283 9881 7717 2635 5021 2244

Least-Squares All (LSA)

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 4 1 1 2 2 1
Average cluster size 1821 9881 7717 1476 1383 4489
Significant voxels 7283 9881 7717 2952 2766 4489

Least-Squares Separate (LSS)

t-test Stelzer's TFCE t-test Stelzer's TFCE

Number of clusters 4 1 1 2 3 1
Average cluster size 1831 9906 7692 1424 1463 4551
Significant voxels 7321 9906 7692 2847 4387 4551
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Stelzer's was also obtained, but in this case, TFCE yielded very similar
results to Stelzer's instead than to the t-test (see Figs. 11 and 12).
Modelling the first event as zero duration did not change much the
results, as Fig. 13 shows. It is important to highlight that when any of
the non-parametric approaches was used, the difference in the in-
formative regions obtained by the LSU and LSS methods was minimum.
We further discuss the implications of this finding in Section 4.

Figs. 14 and 15 reveal the differences between the three approaches
for Dataset 2. Similarly to Dataset 1, Stelzer's shows larger sensitivity
regardless of the estimation method used, (see Table 4). Moreover, the

location of the significant voxels is quite similar across the three ap-
proaches: they found a single massive significant cluster, slightly larger
in case of TFCE and with a 35% of more significant voxels in the case of
Stelzer's in comparison with the t-test. This superior sensitivity of non-
parametric methods is also observed in Dataset 3 (see Table 4), whereas
the most informative brain regions are summarized in Figs. 16 and 17.

4. Discussion

We have shown for the first time that LSS is the most accurate

Fig. 7. Significant results obtained by the LSS method when discriminating
word valence in Database 1, modelling the words with its corresponding
duration. Results from the t-test and TFCE are practically the same, both in
location and number of significant voxels. Stelzer's method, on the other hand,
yields the significant regions obtained by the other methods while increasing
the number of significant voxels, showing higher sensitivity.

Fig. 8. Comparison of the uncorrected results from the t-test (p<0.001) and
the significant voxels obtained by Stelzer's in Dataset 1 (modelling the duration
of the words). The distribution of the voxels is similar in both cases, so that
differences may rely on the inability to surpass the statistical threshold when
the t-test is applied.

Fig. 9. Voxels distribution in the most informative regions for the valence
classification of Dataset 1, modelling the first event with its corresponding
duration. The Inferior Frontal Gyrus is the only region where the three methods
found informative voxels.

Fig. 10. Comparison of the results obtained by the different pattern estimation
and statistical methods in the valence classification modelling the words as
duration/impulse events.

Fig. 11. Significant results obtained by the different pattern estimation and
statistical methods in the fairness classification modelling the words with its
corresponding duration.
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approach for unmixing the contribution to the hemodynamic signal of
different events within a trial, regardless of they have different or the
same duration. Moreover, the non-parametric procedure proposed in
Stelzer et al. (2013) is the most sensitive technique when group sta-
tistics must be generated from local MVPA approaches such as a
searchlight. In this section we will discuss the results obtained by each
method (pattern estimation and statistical) for the different datasets
evaluated.

4.1. Comparison between LSU, LSA and LSS

In Dataset 1, we found large differences in performance across the

pattern estimation methods, particularly for the valence classification.
Therefore, these differences were present in the two ways of modelling
the first event. Estimating responses through LSS allowed us to detect
the involvement of a coherent set of brain regions, whereas using LSU
and LSA did not yield significant results. Previous studies showed that
the performance of LSA and LSS (Abdulrahman and Henson, 2016) is
affected by parameters such as the ISI, noise and trial variability. Col-
linearity is another element that plays a crucial role in the estimation of

Fig. 12. Voxels distribution in the most informative regions for the fairness classification of Dataset 1, modelling the first event with its corresponding duration.
Region SMA = Supplementary Motor Area.

Fig. 13. Significant results obtained by the different pattern estimation and
statistical methods in the fairness classification of Dataset 1 where words were
modelled as zero-duration events.

Fig. 14. Significant results obtained by the different pattern estimation
methods and techniques for evaluating the statistical significance in Haxby's
experiment. LSA is equivalent to LSU in this case, so only results for LSU and
LSS are presented.
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neural activity. The difficulty of applying decoding analyses in our
paradigm is not due to a short interval between consecutive trials, but
this actual no separation between the activity associated with each
event within a trial. However, collinearity cannot be reduced to the way
in which events are modelled, as it is also highly affected by the cog-
nitive nature of the process underlying the events. It is worth high-
lighting that, to the best of our knowledge, this is the first time that
these estimation methods are compared in a setting like this. Our results
are coherent with findings of previous studies. Analyses carried out by
Mumford et al. (2012) concluded that LSS outperforms LSA in high
collinearity settings, as it does not employ any regularization strategy.
Besides, it is worth remembering that this method was developed due to
the poor performance of LSA in rapid event-related designs.

The analyses of the second event of Dataset 1 (e.g. the fairness
classification) yielded significant results for the three pattern estimation
methods, unlike the valence classification where only LSS was sensitive
enough. Besides, the influence of the different ways of modelling the
first event into the estimability of the second event was minimal since
results are essentially the same in both contexts. The key of this finding
is the classification problem itself. Neural activity differentially asso-
ciated with valence is hard to obtain, as shown by recent metaanalytic
approaches (Lindquist et al., 2015), whereas the fairness of an offer
generates large differences and thus it is easier for the LSU approach to
make an accurate estimation. Regarding LSA, we mentioned above the
large collinearity between the first event (adjective) and the second
(offer), so it was highly expected that LSA did not find any informative
regions in neither the valence nor the fairness classification. This raises
the intriguing possibility that in contexts where most of the strategies
fail to detect differential activity, LSS might be sensitive to small var-
iations.

In Dataset 2 we found large similarities in the results obtained by all
pattern estimation methods. A block for each object category was
presented only once in each run, which means that no average was
applied across experimental conditions of the same type. This yields the
same number of beta maps for all classifiers, so that the disadvantages
of LSA from a machine learning standpoint are not met. Besides, block
settings are not propitious for a better performance of LSS since the
overlap of signals is much lower than in event-related designs, where
this approach yields cleaner patterns. Another reason for this similarity
is the large perceptual difference in the neural activity elicited by each

type of stimulus (faces and houses), so that it is straightforward for a
classifier to build a decision hyperplane that properly separates the
corresponding activation patterns.

We used Dataset 3 to evaluate the performance of the different
pattern estimation methods in a context more similar to our experiment
than Dataset 2. In Dataset 3, all pattern estimation methods were able
to extract significant regions. Besides, these regions are quite similar
regardless of the method used. It is remarkable that LSA allows a good
estimation in this setting. There is an important difference in the ex-
perimental design that can explain this result: in Dataset 3 all events
represent faces: participants evaluate if these faces are familiar/un-
familiar and respond according to that, which involves a brief activity.
However, in Dataset 1 participants read an adjective with a certain
valence, and according to this valence, they prepare to respond to an
offer. Thus, there is a preparatory process that leads to a sustained
activity along time.

4.2. Comparison between t-test, Stelzer's and TFCE

As a further goal, we aimed at testing the adequacy of different
statistical approaches. For the valence classification of Dataset 1, we
only obtained significant results when the LSS method was employed,
for the two different durations assigned to the first event. The sig-
nificance maps are essentially the same after applying t-test and TFCE,
both in the number of significant voxels and in their location. On the
other hand, Stelzer's resulted in a larger sensitivity than the other
methods, yielding eight times more significant voxels. Fig. 8 compares
the uncorrected results for the t-test (voxel-level threshold: p < 0.001,
but uncorrected for multiple comparisons) with the corrected results
obtained by Stelzer's. In this case, there is much more coherence be-
tween both methods regarding the number of voxels and, crucially,
their location. In fact, the three clusters that Stelzer's marked as sig-
nificant are found with the uncorrected t-test as well. Therefore, rather
than being less sensitive to false positives, Stelzer's method seems to
efficiently detect true data that otherwise do not surpass the statistical
threshold. There are several studies that support that non-parametric
approaches are able to simultaneously improve the sensitivity while
precisely controlling for false positives (e.g. Eklund et al., 2016; Nichols
and Hayasaka, 2003; Silver et al., 2011; Stelzer et al., 2013; Winkler
et al., 2014). In addition and most interestingly, the largest cluster

Fig. 15. Voxels distribution in the most informative regions for each statistical and pattern estimation method in Dataset 2. Results are similar for all the employed
methods, but discrepancy appears in the cerebelum and the precuneus.
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uncovered by LSS in the valence classification resides in the Medial
Frontal Cortex (see Fig. 9) and includes the peak of maximum differ-
ences between positive and negative valence observed in the published
metaanalyses by Lindquist et al. (2015) (MNI = [9, 39, −9], see
Fig. 1). Thus, this close correspondence speaks strongly in favor of the
higher sensitivity of the method.

On the other hand, our study is the first to compare Stelzer's and
TFCE methods. Although both use permutation testing for evaluating
the significance, the way in which they implement permutations may
lead to the large differences observed. One of the most appealing as-
pects of Stelzer's is that it takes into account the spatial inhomogeneities
of the image. In fact, the scheme used by this approach is equivalent to
computing a significance threshold for each voxel separately. This
controls the false-positives rate in non-informative voxels and avoids
being too conservative in the informative ones (Stelzer et al., 2013),
which may lend it more sensitive in event-by-event estimations. An
encouraging finding is that there is large spatial overlap between the
regions that TFCE and Stelzer's mark as significant. Specifically, all
significant voxels in TFCE are also considered significant by Stelzer's,
but the latter adds voxels to the previously identified clusters (see
Fig. 7). We found even more similarities between Stelzer's and TFCE in
the fairness classification. In fact, the way these voxels are distributed is
almost identical as Fig. 11 reveals. Most information is encoded in the
Pre/Postcentral gyrus, the SMA (Supplementary Motor Area) and the
Cingulate Gyrus, as Fig. 12 shows. These areas are consistent with
previous experiments based on the Ultimatum Game (UG), Corradi-
Dell’Acqua et al. (2013). For a more detailed explanation of this task
and the concordance between the informative regions and our results,
see the meta-analysis by Gabay et al. (2014).

As predicted, similarities between the different statistical methods
were larger in Dataset 2. Regarding the t-test and TFCE, the spatial
distribution of the voxels was essentially the same, with a slight boost of
5% in the number of significant voxels when the latter was applied. On
the other hand, Stelzer's yielded 35% more significant voxels, but all the
additional ones marked as significant were adjacent to the clusters
obtained by the other two methods. Fig. 15 highlights the regions
where the information is mainly distributed and its variability over
different statistical methods, much smaller than in Dataset 1. Results
are essentially the same for each pattern estimation and statistical
method, principally in the occipital pole and the fusiform gyrus.

Fig. 16. Significant results obtained by the different pattern estimation
methods and techniques for evaluating the statistical significance in Dataset 3.

Fig. 17. Voxels distribution in the most informative regions for each statistical and pattern estimation method in Dataset 3.
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Stelzer's yielded more informative voxels in the cerebelum, but the t-
test and TFCE were more sensitive in the precuneus. It is important to
point out the much larger increase in sensitivity that Stelzer's yielded in
Dataset 1 in comparison with Dataset 2. One possibility is that noise
was differently distributed in both designs and generated a differential
tendency to false-positives. The jitter between experimental conditions
in Dataset 1 and the fact that we were isolating different events within a
trial may be the reason why a more adequate statistical method leads to
larger improvement of sensitivity in this dataset compared to a block
design (Dataset 2). We highlight the importance of this finding since
although Stelzer's showed a larger sensitivity in all contexts, it was even
higher than the other two methods in the most difficult case, when the
overlap and collinearity between conditions were highest. The nature of
the classification per se may also be of importance in this difference.
Whereas the classic block design from Haxby et al. (2001) contrasted
two stimuli with large perceptual and phylogenetic differences (e.g.
Kanwisher and Yovel, 2006), the classification employed in Dataset 1
compared the same physical stimuli (words), equated in length
(number of letters), frequency of use and arousal levels. In addition,
whereas the brain networks involved in face processing are different
from those activated by houses (Haxby et al., 2014), isolating regions
with a differential involvement in valence processing is much harder
(e.g. Lindquist et al., 2012, 2015).

Results in Dataset 3 show a great similarity between the two
methods based on permutations, more sensitive than the t-test as in
previous datasets. In fact, they are more similar to those obtained in a
block-design (Dataset 2) than in the event-related of Dataset 1.
Specifically, the occipital pole, followed by the MFG (Medial Frontal
Gyrus) and the MTF (Middle Temporal Gyrus) are the most informative
regions (see Table 4), which are consistent with the original study
(Visconti di Oleggio Castello et al., 2017). It is important to mention
that the additional mechanisms that we have employed to ascertain that
results in all the analyses conducted are trustworthy. The first one is the
proper selection of a searchlight size. Experiments carried out in Etzel
et al. (2013) showed that the number of voxels considered informative
in a searchlight map tends to grow as the searchlight radius increases,
even when the size of the informative region stays fixed. Thus, the
larger the searchlight size, the more likely to obtain false positives. This
is consistent with findings in Stelzer et al. (2013), where false positives
were boosted for a searchlight diameter of 11 voxels. For our analyses,
we chose an intermediate value of 8-voxels searchlights to strike a
balance between sensitivity and specificity (Arco et al., 2016; Chen
et al., 2011). Additionally, we selected a conservative value for the
initial-cluster forming threshold to control false positives. The use of a
liberal value can have detrimental effects on false positives, location
and even interpretation of neural mechanisms (Woo and Wager, 2014).
Likewise, Stelzer et al. (2013) fully studied the relationship between
this parameter and the results obtained and they highly recommend the
election of a p-value ranging from 0.005 to 0.001. We chose the most
conservative value (p = 0.001), prioritizing the control of false posi-
tives over sensitivity.

5. Conclusion

In this work, we compared three different pattern estimation
methods, as well as parametric and non-parametric approaches for
testing significance in a setting that requires the isolation of a sustained
activity from zero-duration events within the same trial. The method
with the best performance, Least-Squares Separate (LSS), comprises an
iterative fitting of a new GLM for each unique event, which addresses
the large overlap of signal from close events. This method was also
tested in a block-design and in an event-related design. In both sce-
narios, this approach demonstrates its ability for improving the sensi-
tivity and provides more information about the brain regions involved
in the cognitive process under study. The different results regarding the
statistical approach used suggest that using permutation testing in

addition to a local-conservative significance threshold indicates that the
better performance is due to a better estimation of brain activity and
not to an unspecific boost in false-positives. This supports recent claims
that the t-test is not the proper option to determine the probability of a
decoding result at the group level, due to the assumptions about the
Gaussianity of the data that are not always met. Our study provides
evidence of which method yields a better performance in settings with
large collinearity between signals of different duration, which paves the
way for future neuroscience studies.
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