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A central challenge in cognitive neuroscience is to understand the neural mechanisms that underlie the
capacity to control our behavior according to internal goals. Flanker tasks, which require responding
to stimuli surrounded by distracters that trigger incompatible action tendencies, are frequently used
to measure this conflict. Even though the interference generated in these situations has been broadly
studied, multivariate analysis techniques can shed new light into the underlying neural mechanisms.
The current study is an initial approximation to adapt an interference Flanker paradigm embedded in
a Demand-Selection Task to a format that allows measuring concurrent high-density electroencephalog-
raphy. We used multivariate pattern analysis (MVPA) to decode conflict-related electrophysiological
markers associated with congruent or incongruent target events in a time-frequency resolved way. Our
results replicate findings obtained with other analysis approaches and offer new information regarding
the dynamics of the underlying mechanisms, which show signs of reinstantiation. Our findings, some of
which could not had been obtained with classic analytical strategies, open novel avenues of research.

Keywords: multivariate pattern analysis; electroencephalography; classification; support vector machine;
demand-selection task.

1. Introduction

Cognitive control comprises a set of mechanisms that

allow humans to behave according to their internal

goals while ignoring distracting information.1 The

Flanker task,2 where participants respond to the di-

rection of an arrow surrounded by other distract-

ing arrows, is among the most used in the field.

The main result of this task is the so-called inter-

ference or conflict effect, where responses are slower

and less accurate in incongruent (when the direc-

tion of the distracters is opposite to the target) vs.

congruent trials. In the current study, we employed

the described Flanker task in the context of effort

avoidance.3 Cognitive control involves effort, which

is costly and partly aversive, and thus humans usu-

ally avoid it if given the chance. In Demand- Selec-

tion Tasks (DST),3 participants tend to choose the

easy option over the hard one. The tendency to avoid

1

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJNS

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
05

/1
4/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 10, 2020 10:12 ws-ijns
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the hard option seems partly due to the cost of over-

coming the increased cognitive control required when

responding to incongruent situations. However, the

neural underpinnings of this effect are not well un-

derstood.

The majority of Electroencephalography (EEG)

studies of the interference effect have analyzed

Event-Related Potentials (ERPs), focusing on the

N2 component. Besides, studies employing frequency

analyses have shown Theta and Delta band involve-

ment. Other authors4 have proposed a link between

the ERPs and modulations in the Delta-Theta band

of frequency. These univariate approaches have been

the gold standard in the EEG literature for years,

not only to study the interference effects but several

cognitive processes.

In recent years, newer Multivariate Pattern

Analysis (MVPA) techniques based on Machine

Learning algorithms, in conjunction with neuroimag-

ing techniques such as functional Magnetic Reso-

nance Imaging (fMRI), Electroencephalography or

Magnetoencephalography (MEG), have gained pop-

ularity in Cognitive Neuroscience.5–10 These su-

pervised Machine Learning algorithms, particularly

Linear Support Vector Machines (LSVM)(Vapnik,

1979)11,12 have been also widely applied in clin-

ical settings such as computer-aided diagnosis of

Alzheimer’s disease,13–16 automatic sleep stages clas-

sification17,18 or automatic detection of sleep disor-

ders.19

One of the most remarkable advantages of these

multivariate over univariate approaches is its sensi-

tivity in detecting subtle changes in the patterns of

activations associated with specific information con-

tent.20 When applied to fMRI data, the poor tempo-

ral resolution of the signal prevents an accurate study

of how cognitive processes unfold in time. In contrast,

when applied to M/EEG signals,21 MVPA has been

useful to uncover the neural dynamics of face detec-

tion,22 the process of memory retrieval,23 the rep-

resentational dynamics of task and object processing

in humans24 or the representation of spoken words in

bilingual listeners.25 In the same line, time-resolved

MVPA presents an opportunity to categorize the

temporal sequence of the neural processes underly-

ing the interference effect. Furthermore, the relation-

ship between these and Theta frequency modulations

reported in previous studies26 can be better under-

stood using this approach.

This study is an extension of previous work27

which adapted a DST to a format that allows mea-

suring concurrent high-density electroencephalogra-

phy. Our main goal is to present a set of methodolog-

ical MVPA tools that allow to study and decode the

conflict-related neural processes underlying interfer-

ence effects, in a time-frequency resolved way.
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Figure 1. (A) Experimental sequence of events in case
of a correct response on both cue and flanker stimuli.
Each trial started with a fixation point, followed by a
cue, which acted as a selector of the difficulty of the up-
coming Flanker target. Participants had to choose (freely
or forced, depending on the block type) the posible color
of the upcoming target stimulus, which was associated
with either high (difficult) or low (easy) probability of
incongruent trials. Finally, after a variable time interval
(100-300ms) the target stimulus appeared and partici-
pants had to respond to the orientation of the central ar-
row. Another variable time interval appeared before the
beginning of the next trial. The cue and the target stimuli
remained on screen for 190ms. (B) Cognitive effort was
manipulated through the percentage of congruent and in-
congruent trials. Each cue color was associated with the
high or low conflict contexts.

2. Materials and methods

2.1. Paradigm and data acquisition

2.1.1. Participants

Thirty-two healthy individuals (21 females, 29 right-

handed, mean age = 24.65, SD = 4.57) were recruited

for the experiment. The sex imbalance reflects the

usual distribution of gender in the student pool (Psy-
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chology) where participant recruitment took place.

Participants had normal or corrected-to-normal vi-

sion and no neurological or psychiatric disorders. All

of them provided informed, written consent before

the beginning of the experiment and received a 10-

euro payment or course credits in exchange for their

participation. The experiment was approved by the

Ethics Committee of the University of Granada.

2.1.2. Stimuli and apparatus

Stimuli presentation and behavioral data collec-

tion were carried out using MATLAB (MathWorks)

in conjunction with Phychtoolbox-3.28 The visual

stimuli were presented in an LCD screen (Benq,

1920x1080 resolution, 60 Hz refresh rate) and placed

68.31±5.37 cm away of participants’ Glabella, in a

magnetically shielded room. Using a photodetector,

the stimuli onset lag was measured at 8ms, which

corresponds to half of the refresh rate of the mon-

itor. Triggers were sent from the presentation com-

puter to the EEG recording system through an 8-bit

parallel port and using a custom MATLAB function

in conjunction with inpoutx64 driver,29 a C++ ex-

tension (mex-file) that uses native methods to access

low-level hardware in MATLAB (I/O parallel ports).

Cues consisted of two squares of two differ-

ent colors (red/green and yellow/blue, in different

blocks) stacked and presented at the center of the

screen (visual angle ∼5 degree). In forced blocks,

a small white indicator (circle 50% or square 50%)

appeared on top of the color that had to be cho-

sen. In voluntary blocks, this indicator appeared be-

tween the two colored squares (see Figure 1). Each

target stimulus consisted of five arrows pointing left

or rightwards, which were displayed at the center of

the screen (visual angle ∼6 degree). The color of the

target stimulus was the same as the cue previously

selected.

2.1.3. Procedure

The Color-Based Demand-Selection Task (DST)

(Figure 1 a), modified from,3 consisted of a cue-

target sequence arranged in four blocks (2 forced and

2 voluntary). In voluntary blocks, participants were

required to freely choose one of the two colors avail-

able, which indicated the difficulty of the upcoming

task. In forced blocks, a small white indicator ap-

peared on top of the color that had to be chosen.

The color of the target stimulus was the same as

the cue previously selected and participants were re-

quired to discriminate the orientation (right or left)

of a central arrow target surrounded by arrows point-

ing at the same (compatible distractors) or opposite

(incompatible distractors) directions.

Our task was built following a 3-way facto-

rial design, containing the following within-subjects

independent variables: (1) Stimulus type (congru-

ent/incongruent); (2) Block type (forced/voluntary)

and (3) Context (easy/difficult). The task difficulty

manipulation was based on the proportion of congru-

ent and incongruent trials, with the easy contexts

presenting 80% of congruent and 20% of incongru-

ent trials, and the difficult task context the opposite

proportion. Within forced blocks, half of the trials

corresponded to the easy context and the remaining

to the difficult one (maintaining, within each con-

dition, the proportion of congruent and incongruent

trials). On voluntary blocks, however, participants

freely chose the context and no experimental control

could be exerted upon this variable.

Participants were instructed to respond as fast

and accurately as possible, and to not choose color

based on personal preference. They were unaware of

the cognitive effort manipulation. To preserve the

signals as clean as possible and remove the least num-

ber of trials, participants were encouraged to remain

as still and relaxed as possible, avoiding face muscle

activity and eye movements, but blinking normally.

The order of the blocks, cue colors, response keys

and color-conflict context mappings were counterbal-

anced across participants. There were 4 blocks, 240

trials per block, and the total recording session lasted

∼90min. Before the experimental session, partici-

pants performed a brief practice to familiarize them-

selves with the task (4 blocks, 20 trials per block,

practice duration ∼20min). To reduce fatigue, there

were rest periods between blocks, with a variable du-

ration depending on participants’ choice. During this

period, participants were asked to remain seated and

rest their eyes and posture before continue with the

task. Additionally, block order was counterbalanced

across participants, and within each block, trial or-

der was randomized, which effectively prevents con-

founds due to differential levels of fatigue across con-

ditions.
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2.1.4. EEG acquisition and preprocessing

High-density electroencephalography was recorded

from 65 electrodes mounted on an elastic cap (ac-

tiCap slim, Brain Products) at the Mind, Brain, and

Behavior Research Center (CIMCYC, University of

Granada, Spain). The TP9 and TP10 electrodes were

used to record the electrooculogram (EOG) and were

placed below and next to the left eye of the partic-

ipant. Impedances were kept below 5kΩ, as recom-

mended by the amplifiers manufacturer. EEG activ-

ity was referenced online to the FCz electrode and

signals were digitized at a sampling rate of 1KHz.

Electroencephalography recordings were aver-

age referenced, downsampled to 256Hz, and digitally

filtered using a low-pass FIR filter with a cutoff fre-

quency of 120Hz, preserving phase information. The

recording amplifiers have an intrinsic lower cutoff fre-

quency of 0.016Hz (time constant τ = 10s).

No channel was interpolated for any participant.

EEG recordings were epoched [-1000, 2000ms cen-

tered at onset of the target arrows] and baseline cor-

rected [-200, 0ms], and data were extracted only from

correct trials. To remove blinks from the remaining

data, Independent Component Analysis (ICA) was

computed using the runica algorithm in EEGLAB,30

excluding TP9 and TP10 channels. Artifactual com-

ponents were rejected by visual inspection of raw

activity of each component, scalp maps and power

spectrum. Then, an automatic trial rejection pro-

cess was performed, pruning the data from non-

stereotypical artifacts. The trial rejection procedure

was based on (1) abnormal spectra: the spectrum

should not deviate from baseline by ±50dB in the

0-2 Hz frequency window, which is optimal for local-

izing any remaining eye movements, and should not

deviate by -100dB or +25dB in 20-40Hz, useful for

detecting muscle activity (∼1% of the total sample

was rejected); (2) improbable data: the probability

of occurrence of each trial was computed by deter-

mining the probability distribution of values across

the data epochs. Trials were thresholded, in terms of

±6SD, and automatically rejected (∼6% of the to-

tal sample); (3) extreme values: all trials with ampli-

tudes in any electrode out of a ±150µV range were

automatically rejected (∼3% of the total sample).

See31–33 for similar EEG preprocessing routines.

2.1.5. Final dataset description

The final dataset for our binary classification prob-

lem is shown in Table 1, where N is the initial num-

ber of trials per participant and class, Nr represents

the number of remaining correct trials after the trial

rejection stage and Nb is the final number of trials

used for classification per participant (after down-

sampling the majority class in order to get balanced

datasets).

Table 1. Number of observations of the final dataset

Observations per participant N Nr Nb

Congruent class 480 426±49 359±52
Incongruent class 480 368±59 359±52

Total number of observations NTr NTb

Congruent class 13644 11505
Incongruent class 11782 11505

2.1.6. Behavioral data analysis

Reaction time (RT) and error rates were registered

for each participant. Before the statistical analysis,

the first trial of each block, trials with choice er-

rors and trials after errors were filtered out.34 Fi-

nally, RT outliers were also rejected using a ±2.5

SD threshold, calculated individually per participant

and condition. To analyze behavioral data (accuracy

and reaction times) we conducted repeated-measures

ANOVAs in SPSS Statistics Software (v.20). Post

hoc tests were carried out on the significant interac-

tions using a Bonferroni correction for multiple com-

parisons.

2.2. Multivariate pattern analysis

The MVPA for the decoding analysis was performed

in MATLAB by a custom-developed set of linear

Support Vector Machines, trained to discriminate

between congruent and incongruent target stimuli.

To avoid skewed classification results, the datasets

were strictly balanced, by downsampling the major-

ity class to match the size of the minority one. In

addition, class size was set as a factor of k, the total

number of folds in the cross-validation stage. Accord-

ingly, each fold was composed by exactly the same

number of observations, avoiding any kind of bias in
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the results. The rest of the classification parameters

remained by default.

2.2.1. Feature extraction

To obtain the classification performance in a time-

resolved way, the feature vectors were extracted as

shown in Figure 2. The classification procedure, for

each participant, ran as follows: (1) For each time-

point and trial, we generated two feature vectors (one

for each condition or class) consisting of the raw po-

tential measured in all electrodes (excluding EOG

electrodes: TP9 and TP10). (2) Each individual fea-

ture vector, containing raw potential values were nor-

malized (z-score, µ = 0, σ = 1 ).

2.2.2. Supertrial generation

Due to the noisy nature of the EEG signal, a trial av-

eraging approach was carried out during the feature

extraction stage. This approach increases the signal-

to-noise ratio (SNR),35 improves the overall decod-

ing performance and also reduces the computational

load. Each participant’s dataset was reduced by ran-

domly averaging a number of trials ta belonging to

the same condition. The value of ta is a trade-off be-

tween an increased classification performance (due

to an increased SNR) and the variance in the classi-

fier performance, since reducing number of trials per

condition typically increases the variance in (within-

participant) classifier performance.36 Therefore, the

optimal number of trials to average depends on the

dataset, taking into account that averaging more tri-

als does not increment the decoding performance lin-

early.

2.2.3. Feature selection

As mentioned in section 2.2.1, Xn×p datasets are

generated for each participant and timepoint, where

n is the number of trials (observations) and p the

total number of electrodes (variables or features).

In machine learning, feature selection techniques,

also known as dimension reduction, are a common

practice to reduce the number of variables in high-

dimensional datasets (Figure 3). Principal Compo-

nent Analysis (PCA) is probably the most popular

multivariate statistical technique and it is used in

almost all scientific disciplines,37 including Neuro-

science.38

(A) FEATURE EXTRACTION

Fp1

AF4

F2

Iz

…

TRIALS PER CONDITION

CONDITION 1 Features vectors (t = 200ms)t = 200ms
…

(B) CROSS-VALIDATED LSVM CLASSIFIER  �  % ACC

EMPIRICAL CHANCE LEVELDE
CO

DI
NG

 A
CC

UR
AC

Y

t = 200ms

FOR EACH TIMEPOINT

Fp1 Fz F3 F7 FT9 … … … … AF4 F2 Iz

CONDITION 2 Features vectors (t = 200ms)
…

Figure 2. (A) Feature extraction process in simulated
data. The feature vectors of each condition and time
point consisted of a z-scored voltage array for all the
scalp electrodes. For an improved SNR, several trials were
averaged before feature extraction. (B) Cross-validated
LSVM classifier. For each time point, an LSVM was
trained and tested (stratified k-fold cross-validation, k =
5). Chance level was calculated by permuting the labels.
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PCA is a linear transformation of the original

dataset in an orthogonal coordinate system in which

axis coordinates (principal components) correspond

to the directions of highest variance sorted by impor-

tance. To compute this transformation,39 each row

vector xi of the original dataset X is mapped to a

new vector of principal components ti = (t1, ..., tl),

also called scores, using a p-dimensional coefficient

vector wj = (w1, ..., wp). For dimension reduction,

l < p.

ti = xi ·wj i = 1, ..., n j = 1, ..., l (1)

To maintain the model’s performance as fair as

possible, in our study PCA was computed only for

training sets Xtraining, independently for each fold

inside the cross-validation procedure. Once PCA for

the corresponding training set was computed and the

model was trained, the exact same transformation

was applied to the test set Xtest (including centering,

µtraining). In other words, the test set was projected

onto the reduced feature space obtained during the

training stage. According to equation (1), this pro-

jection is computed as follows:

Ttest =
Xtest − µtraining

W’training
(2)

Feature selection techniques such PCA usually

imply an intrinsic loss of spatial information, e.g.

data projected from the sensor space onto the re-

duced PCA features space. Therefore, PCA presents

a trade-off between dimension reduction and results’

interpretation. If PCA is computed, the spatial in-

formation of each electrode is lost, which means

that, for example, we cannot directly analyze which

electrodes are contributing more to decoding perfor-

mance.

2.2.4. Model’s performance evaluation

To evaluate classification models in neuroscience,

performance is usually measured employing mean ac-

curacy.40 However, mean accuracy may generate sys-

tematic biases in situations with very skewed sample

distributions, and overfitting one single class should

be avoided. Therefore, nonparametric and criterion-

free estimates, such as the Area Under the ROC

Curve (AUC) have been proved as a better measure

of generalization in these situations.41 The AUC pro-

vides a way to evaluate the performance of a classifi-

cation model. The larger the area, the more accurate

the classification model is, and it is computed as fol-

lows:

AUC =

∫ 1

0

ROC(s)ds (3)

The ROC curve is one of the most suitable eval-

uation criteria, as it shows how capable the model

is in distinguishing between conditions, by facing

the sensitivity (True Positive Rate, TPR) against 1-

specificity (False Positive Rate, FPR). In this study,

we employed both methods, the mean accuracy, to

replicate a common approach in literature, and ROC

curves and AUC, to provide a more informative mea-

sure.

To evaluate the performance of our model,

LSVMs were trained and validated, resulting in a

single performance value for each timepoint and par-

ticipant. The classification performance at the group

level was calculated by averaging these values across

participants. The chance level was calculated follow-

ing the former analysis but using randomly permuted

labels for each trial.

The generalization ability of our model was es-

timated through a Cross-Validation (CV) approach

(stratified k-fold, k = 5 ), which is a well-established

and a widely implemented technique to preserve

complex models from overfitting.

-60
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20

PC
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50
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0
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-40-20020-100 4060

Figure 3. Dimension reduction in real datasets. 3D rep-
resentation of the three first PCA components for con-
gruent vs. incongruent trials [example participant, t =
421ms after Flanker stimulus onset]

Moreover, some important aspects are worth be-

ing highlighted. The use of CV approaches often

leads (particularly in Neuroscience) to small sample
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sizes and a high level of heterogeneity when condi-

tions are splitted into each fold, causing among other

things a large classification variability.42 To address

these problems, recent studies43,44 considered the

use of the resubstitution error estimate when using

LSVM (in small sample sizes and low dimensional

scenarios), proposing a novel analytic expression for

the upper bound on the actual risk γemp(l, d) for a

range of sample sizes l, dimensions d and any sig-

nificance η < 0.05 (Figure 8). Therefore, the differ-

ence between the actual error and the resubstitution

error is bounded by the actual risk γemp, which is

computed as follows:

γemp ≤
√

1

2l
ln
N(l, d)

η
(4)

where N is defined in43 as:

N(l, d) = 2
d−1∑

k=0

(
l − 1

k

)
(5)

Resubstitution has been proved competitive in

some heterogeneous-data scenarios with CV ap-

proaches not only in terms of accuracy but also

in computational load.45 The proposed solution has

been recently applied in clinical settings studying

autistic patterns46 or Alzheimers Disease.47 The sce-

nario previously mentioned (linear classifiers, small

sample size and low dimensional space) seems to fit

perfectly with our study setup, therefore, we also

used the resubstitution error estimate to evaluate the

classification performance.

2.2.5. Optimization of SVM hyperparameters

A search-grid based optimization of the misclassifica-

tion cost parameter C was carried out using five-fold

cross-validation on the training set:

||β||2 + C
l∑

i=1

ξi (6)

where C is a constant which modulates the trade-off

between the training error and the complexity of the

model and the vector β contains the coefficients that

define an orthogonal vector to the hyperplane.

2.3. Temporal generalization matrix

Temporal generalization analyses are used to evalu-

ate the stability of the brain patterns along time, by

training the model in one temporal point and testing

its ability to discriminate between conditions in the

remaining temporal window. This process is repeated

for every timepoint. In our study, classification per-

formance was assessed through a cross-validation

technique (stratified k-fold cross-validation, k = 5).

For each timepoint, the classifier was trained with

Xtraining dataset and tested with Xtest in the remain-

ing points of the temporal window. This process was

repeated k times, obtaining the final decoding accu-

racy.

An above-chance discrimination rate outside the

diagonal of the matrix suggests that the same activ-

ity pattern is sustained in time. However, if there

is no evidence of temporal generalization, different

patterns of activity can be assumed.24

2.4. Multivariate cross-classification

The ability of MVPA to detect subtle differences in

brain activity patterns can be used to study how

these patterns are similar across different cognitive

contexts. In other words, the consistency of the infor-

mation across different sets of data can be analyzed.

To this end, classification algorithms are trained with

one set of data and the consistency is assessed by

testing the model with another dataset, belonging

to a different experimental condition. This technique

is called Multivariate Cross-Clasification20(MVCC)

and is growing in popularity in recent years.48–50

The fact that the training and test sets are

different eliminates the need to use cross-validation

techniques. However, the classification direction have

to be taken into account, that is, which set is used

for training and which one for testing. The result

of the classification could differ if, for instance, the

signal-to-noise ratio is quite different across datasets,

that is to say, differences in classes separability across

datasets and an asymmetry in the generalization di-

rection.51 For this reason, reporting results in both

directions is highly recommended.

In this study, MVCC was used to analyze if the

neural patterns associated with the congruency ef-

fect are similar across voluntary and forced blocks.

For that, classifiers were trained with data of forced

blocks and tested in voluntary blocks, and vice versa.
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In addition, a temporal generalization matrix was

also computed to study the similarity across block

types and time. Feature selection in MVCC analy-

sis also requires some additional considerations, as

features selected for the training set could not be

optimal for the test set. To avoid possible skewed re-

sults, no feature selection was computed for MVCC

analyses.

2.5. Statistical analysis

Applying t-test statistics on multivariate results is

an unsuitable approach to draw statistical inferences

at the group level.52 For that reason, the use of

cluster-based non-parametric permutation methods

is widespread, not only in fMRI53–56 but more re-

cently also in M/EEG studies.57–60 In our study, a

non-parametric cluster-based permutation approach,

proposed in52 for fMRI data, was adapted and im-

plemented for the statistical analysis.

We thresholded the decoding accuracy obtained

with an empirical accuracy null distribution, calcu-

lated by means of a combined permutation and boot-

strapping technique. First, at the single-subject level,

100 randomly permuted accuracy maps were gener-

ated. To draw statistical inferences at the group level,

we randomly drew one of the previously calculated

accuracy maps for each participant. This selection

was group-averaged and the procedure was repeated

105 times, generating 105 permuted group accuracy

maps.

Next, for each timepoint we estimated the

chance distribution of accuracy values and deter-

mined the accuracy threshold (99.9th percentile of

the right-tailed area of the distribution), which corre-

sponds to a very low probability to obtain significant

results by chance.

Then, we searched and collected clusters of time-

points exceeding the previously calculated threshold

in all the 105 permuted accuracy maps, generating

the normalized null distribution of cluster sizes. Fi-

nally, we applied a correction for multiple compar-

isons (FDR, False Discovery Rate) at a cluster level

to obtain the smallest cluster size to be considered

significant.61–64

2.6. Frequency contribution analysis

The contribution of each frequency band to the over-

all decoding performance was assessed through an

exploratory sliding filter approach. We designed a

band-stop FIR filter using pop firws EEGLab func-

tion (2Hz bandwidth, 0.2Hz transition band, 2816

filter order, Blackman window) and pre-filtered the

EEG data (120 overlapped frequency bands, between

0-120Hz and linearly-spaced steps) producing 120

filtered versions of the original EEG dataset. The

former time-resolved decoding analysis (congruent

vs. incongruent, ta = 10) was repeated for each fil-

tered version and the importance of each filtered-out

band was quantified computing the difference maps

in decoding performance between the filtered and the

original decoding results. Significant clusters were

found applying the proposed cluster-based permuta-

tion test to filtered-out datasets, generating accuracy

null distributions for each time-frequency point.

With the purpose of obtaining better frequency

resolution in lower bands, the previous analysis was

repeated for frequencies between 0-40Hz in 120 over-

lapped and logarithmically spaced steps.

Figure 4. Accuracy (a) and cluster size (b) null distri-
butions. The vertical dotted line represents the threshold
corresponding to a very low probability to obtain signif-
icant results by chance. This threshold correspond to a
p-value below 0.001 for both distributions.

3. Results

3.1. Behavioral results

The behavioral results of reaction times repli-

cate well-known conflict effects linked to context-

dependent congruency,3,34 with a significant interac-

tion of Context × Stimulus Type (F(1,31) = 26.285,

p < .004, η2p = .459). Planned comparisons showed

significant differences between congruent and incon-

gruent trials for both the easy (F(1,31) = 272.707,

p < .001, η2p = .885) and the difficult contexts
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Figure 5. Group level MVPA results. Time-resolved classifier performance when different number of trials were averaged.
The standard error of the (a) classification accuracy and (b) the Area Under the Curve are represented using colored
areas. Significant windows (ta = 10) obtained via Stelzer permutation test are highlighted using horizontal bold lines. The
stimulus screen time [0−190]ms is shaded. (c) Receiver Operating Characteristic curves for different timepoints [example
participant, ta = 10, t =-199ms, 188ms, 328ms and 375ms].

(F(1,31) = 183.109, p < .001, η2p = .855) with larger

differences in reaction times in the easy (congruent

trials: M = 0.465, SD = 0.13; incongruent trials:

M = 0.560, SD = 0.15), compared to the difficult

context (congruent trials: M = 0.474, SD = 0.13; in-

congruent trials: M = 0.553, SD = 0.14). The effort-

avoidance effect, as expected, was also observed in

voluntary decision blocks (percentage of choice of

easy 57,11% SEM = 2.93 vs difficult 42,88% SEM

= 2.93 contexts; t = 2.42, p = .021).

3.2. Electrophysiological results

The electrophysiological analyses (Figure 5a) show

significant differences (p <.001, cluster corrected) in

activity patterns for congruent vs. incongruent trials,

peaking at 375ms after the stimulus onset. At this

point, the classifier accurately predicted (> 80%) if

participants were responding to congruent or incon-
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Figure 6. Group level temporal generalization results for congruent vs. incongruent trials (ta = 10). Accuracy (a) and
AUC (b) values when the model was trained and tested in each time point of the whole time window. Significant clusters
obtained via Stelzer permutation tests are highlighted using red lines.

Figure 7. Group level MVPA. (a) Time-resolved classifier performance (ACC, congruent vs. incongruent trials) for dif-
ferent number of PCA components. Colored areas represent the ACC standard error. Statistically significant time windows
(ta = 10, for both 10 PCA components and when PCA was not computed) are highlighted using horizontal bold lines.
The stimulus screen time [0-190]ms is shaded. (b) Explained variance for different numbers of PCA components [example
participant].

gruent trials. Table 2 reports the variations in clas-

sification performance for averages of different num-

ber of trials. The SVM hyper-parameter C was opti-

mized, slightly increasing the decoding performance;

however, the computation time required increased

significantly.

When ten trials were averaged to generate

supertrials, the statistically significant regions ex-

tended from 130ms after stimulus onset to 1200ms

afterwards. As Figure 5 shows, before the stimulus

onset the classification accuracy remained at chance

levels (0.5).

The temporal generalization analysis is shown in

Figure 6. First, the AUC proved to be a more sensi-

tive measure. The AUC temporal generalization ma-

trix (Fig 6b) shows a distinct pattern of generaliza-

tion. Clusters appearing only alongside the diagonal

have been associated with a succession of different

mechanisms. That is to say, the neural information

that allows the classifier to tell apart congruent and

incongruent trials is likely the result of a series of

distinct events. Moreover, Figure 6b shows a clus-

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJNS

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
05

/1
4/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

https://www.worldscientific.com/action/showImage?doi=10.1142/S0129065720500240&iName=master.img-177.jpg&w=486&h=190


March 10, 2020 10:12 ws-ijns

Multivariate Pattern Analysis techniques for EEG data to study Flanker interference effects 11

ter of homogeneous AUC between 200 and 400ms,

which theoretically suggests the operation of a single

cognitive process maintained in time.41 Such mecha-

nism apparently reappears at ∼800-1000ms after the

target onset, posterior to the mean RT (513ms).

Figure 8. Different upper bound estimations via the
procedure found in43 for LSVM across dimension and
sample size at a 95% confidence level (η = 0.05). White
markers represent the upper bound values for the exper-
imental conditions tested in our study.

The actual risk estimation for different sample

sizes and dimensions γemp is shown in Figure 8. The

difference between the actual error and the resubsti-

tution error is bounded by γemp. White markers rep-

resent different experimental configurations for both

the sample size (l) and the number of PCA compo-

nents (d) analyzed in our study. Performance results

obtained by resubstitution (C-optimized, t = 375ms)

for these experimental configurations are shown in

Table 3. The classification accuracy remained above

chance despite the conservative estimation of the up-

per bound of the actual error, preserving our classi-

fication model for overfitting and proving that both

conditions (congruent and incongruent) are represen-

tative of the different underlying activity patterns

associated with congruent and incongruent stimuli.

The cross-classification results (Figure 9a,b)

showed smaller clusters compared to the MVPA time

generalization (Figure6a, b). However, the main di-

agonal cluster in the matrix indicates a series of dif-

ferent events that occur in cascade, but shared be-

tween both contexts.41 This mechanism could reflect

the interference process itself, previous to the re-

sponse.

Table 2. LSVM model peak classification perfor-
mance [t = 375ms] at the group level. The mean
accuracy and AUC are reported for different values
of ta and different numbers of PCA components.

No. of averaged
trials (ta) ACC ± SD AUC ± SD

ta = 1 .60±.05 .65±.07
ta = 3 .65±.07 .70±.08
ta = 5 .69±.10 .74±.12
ta = 8 .74±.10 .79±.12
ta = 10 .76±.11 .80±.13
ta = 10 - C optimized .76±.10 .81±.13

No. of PCA components
(ta = 10)

First Component .64±.14 .66±.17
3 first components .71±.11 .76±.13
5 first components .72±.11 .78±.12
8 first components .73±.12 .80±.13
10 first components .74±.11 .81±.13

Table 3. Classification performance and the actual risk
γemp for a C-optimized LSVM model obtained by the re-
substitution approach. [example participant, t = 375ms]

ACC(γemp(l, d)) d = 1PCA d = 3PCA d = 5PCA

l = 790 (ta = 1) .55(.04) .63(.10) .65(.13)
l = 260 (ta = 3) .58(.08) .68(.16) .71(.20)
l = 150 (ta = 5) .58(.11) .79(.20) .81(.25)
l = 90 (ta = 8) .72(.14) .80(.24) .83(.30)
l = 70 (ta = 10) .81(.15) .88(.27) .92(.34)

3.3. Frequency contribution results

A sliding bandstop filter approach was followed to

study the contribution of each frequency band to

the overall decoding accuracy. Results show that

the interference effect observed relies on neural pro-

cesses operating in the Delta and Theta frequency

bands. Figure 10a shows how decoding accuracy sig-

nificantly drops when frequencies up to 8Hz were

filtered-out.
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Figure 9. MVCC results. (a) Temporal generalization
results when the model was trained with forced blocks
and tested in voluntary blocks and (b) vice versa. (c)
Classifier performance (acc) for the former analyses. Col-
ored areas represent the standard error. Significant win-
dows calculated via Stelzer permutation test are high-
lighted using horizontal lines.

Figure 10. Results of frequency contribution analysis.
Classification accuracy differences when a specific fre-
quency band is filtered-out. (a) [0-40]Hz logarithmically
spaced and (b) [0-120]Hz linearly spaced sliding filter
approach. Significant clusters obtained via Stelzer per-
mutation test are highlighted using red lines.

4. Discussion

In the current study, we present a set of multivariate

pattern analysis techniques for EEG data. Overall,

we effectively classified interference-related electro-

physiological signals from a Demand-Selection Task

in both a time and frequency-resolved manner.

Previous studies on cognitive control and more

specifically, interference processing, have found that

slow rhythms (i.e. Theta, Delta) are associated with

communication between distant brain regions.65 Our

results are in line with those studies, showing that

Theta and Delta oscillations are relevant for the

brain activity underlying performance in an interfer-

ence task. Moreover, previous results (e.g. Cohen26)

show the relevance of Theta in the first instances of

target processing, which changed to Delta after the

participants’ response. These results are supported
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by the present study, which shows Theta and Delta

to be crucial for classification right after the target

onset, which evolves into a single Delta-based clas-

sification around and after the response time. The

meaning of the change from one frequency band to

another along time could be due to neuronal activity

on the Theta band preventing the distractors to be

processed. Once the target is selected, Delta, which

arises later, could reflect inhibition of competing and

erroneous motor responses.66 Our results also indi-

cate the existence of a particular brain process in-

volved in the interference effect that intervenes in

the initial stages of target processing during an ex-

tended time window, and reappears after the behav-

ioral response is given. Interestingly, this is the same

temporal window where classic Event-Related Poten-

tial studies67 have repeatedly observed the N2 poten-

tial, which is taken as the reflection of interference

processing. The indication that the same underlying

mechanism reappears after the response could reflect

the reinstantiation of the interference episode, per-

haps reflecting trial event boundaries.68 This find-

ing, which could not have been obtained with clas-

sic analytical strategies, opens novel avenues of re-

search and aids to better characterize a commonly

used neural correlate. Further research will be needed

to clarify and extend this phenomenon. To summa-

rize, our behavioral and electrophysiological results

add up to existing literature, pointing to an overall

robust effect of interference and conflict avoidance,

which can be observed in various environments and

demographic samples.

Future lines of investigation should address

these findings to complement the results found in

the current investigation. In addition, to increase our

understanding of preparation processes and conflict

effects, it would be of interest to continue analyzing

the current dataset, focusing not only on the target

stimulus, but also on the neural activity triggered by

the cues. Further detailed analyses should be carried

out to study the activation differences between forced

and voluntary blocks or high and low congruency

contexts. The use of newer classification algorithms,

such as Spiking Neural Networks69–72 should be con-

sidered in related studies. They have been demon-

strated to be more powerful in some scenarios than

linear SVM.73,74 Nonetheless, in the present study,

given the small sample size and our main goal (effec-

tive discrimination in time and frequency regardless

of the actual accuracy value obtained), we decided to

use less complex algorithms, which lead to more eas-

ily interpretable results75–77 and prevent model over-

fitting. For this, SVM-based multivariate techniques

represent an opportunity to study the neural basis of

complex psychological processes. In addition, the re-

substitution error estimate proved that, even in the

worst case scenario when the estimated actual risk is

maximum, the classification performance remained

over the chance level. This method, which is suitable

for small sample sizes and low dimensional scenarios

is worthy of consideration in Cognitive Neuroscience

studies, opening up a new path that could lead to

promising results.

5. Conclusion

The current study is an initial approximation to

adapt a DST to a format that allows measuring con-

current high-density electroencephalography. While

most of previous studies categorize the interference

effect through ERP markers such as the N2 po-

tential,67 we successfully used multivariate pattern

analysis (MVPA) to decode conflict-related neural

processes associated with congruent or incongruent

events in a time-frequency resolved way. Our results

replicate findings obtained with other analysis ap-

proaches and offer new information regarding the dy-

namics of the underlying mechanisms.
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M. López, I. Álvarez, F. Segovia, R. Chaves
and C. G. Puntonet, Computer-aided diagnosis of
Alzheimer’s disease using support vector machines
and classification trees, Physics in Medicine and Bi-
ology 55(10) (2010) 2807–2817.
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